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Abstract. The easy-plane ferromagnetic chain in an applied magnetic field is known to map 
onto a sine-Gordon field theory, in the classical continuum limit. The sine-Gordon field 
theory supports breather excitations which, when quantised, are identifiable as a hierarchy of 
bound states of several small-amplitude excitations. For increasing values of the interaction 
parameter, the highest members of the hierarchy become unstable to the emission of a 
soliton/anti-soliton pair. For a critical value of the interaction parameter, even the ground 
state of the quantised sine-Gordon field theory becomes unstable. For the quantum spin 
system, the excitations corresponding to the two lowest members of the hierarchy of 
breathers are the single-spin-wave and the two-spin-wave bound states. We examine the 
two-spin-wave bound-state excitations of the quantum spin system directly, using a large4 
approach. Although our method does rely on large S, we recover previously derived results 
valid for arbitrary S, such as the exact two-spin-wave bound states for the isotropic Heisen- 
berg ferromagnet and the expansion in the anisotropy about this result. In the limit of large 
anisotropy the two-spin-wave bound state becomes unstable, in a manner suggestive of the 
instability of the quantum sine-Gordon field theory. 

1. Introduction 

Mikeska [ 11 proposed that a one-dimensional easy-plane ferromagnet, when subjected 
to a symmetry-breaking magnetic field, can be mapped onto a one-dimensional sine- 
Gordon field theory. The angle Q, representing the direction of the spins within the easy 
plane becomes the field of the sine-Gordon theory and the spin component per- 
pendicular to the easy plane, Sz, is the canonically conjugate momentum field. The 
mapping between the spin system and the sine-Gordon system is restricted to occur in 
the classical continuum limit. This mapping is of considerable interest since it is well 
known that the sine-Gordon system supports very extraordinary types of elementary 
excitations [2]. There are the usual types of small-amplitude excitations which are 
spatially extended over the entire system. Since these excitations have small amplitudes, 
the effects of the non-linear interactions are small and may be taken into account by 
perturbation theory. These quasi-linear excitations are analogous to the spin waves in 
the spin system, which are well described by the harmonic approximation. 

The other types of elementary excitations of the sine-Gordon system are more 
unusual. They have large amplitudes and only extend over a finite region of space. 
Unlike wave packets composed of the small-amplitude spin waves, these non-linear 
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excitations do not disperse; that is, the non-linearity is such that these special excitations 
maintain their forms. These non-linear excitations may be uniformly translated over the 
entire system with a constant velocity. In the sine-Gordon system these excitations 
are characterised as soliton excitations or breather excitations. The soliton excitation 
consists of successive rotations between neighbouring spins, such that the spins rotate 
by 2n over a finite region of space. The breather excitations, on the other hand, consist 
of a field profile which has a uniform internal oscillation. The envelope of the field profile 
has an amplitude and a spatial extent which are determined by the frequency w of the 
internal oscillation. The frequency is a continuous variable, which may take values in 
the range which extends from wo,  the frequency associated with the gap in the spin-wave 
spectrum, all the way down to zero. The field profile for the breather solution can be 
written as 

sin(wt) 
w 2 )  cosh[v(wi - w2)z/c ]  

q ( z ,  t) = 4 tan-' 

where c is the characteristic velocity of the sine-Gordon field theory. The amplitude of 
the breather increases and its spatial extent decreases as the frequency w approaches 
zero. The activation energy of the breather may be written as 

E(@)  = 2Eo(l - w ~ / c L ) ~ ) ' / ~  

where Eo is the rest energy of a soliton. 
Clearly, the presence of an excitation spectrum with arbitrary low excitation energies 

presents problems to the statistical mechanics of the sine-Gordon field theory. Dashen 
et a l [3]  have performed a semi-classical quantisation of the breather excitations using the 
Bohr-Sommerfeld quantisation condition. The resulting breathers have the frequency of 
their internal oscillations quantised. Maki and Takayama [4] have demonstrated the 
equivalence between the hierarchy of the quantum breather excitations and the bound 
states formed between the spin waves. The hierarchy of breather excitations corresponds 
to the multi-spin-wave bound states according to the following prescription. The first- 
quantised breather corresponds to the single spin wave, which is expected on the basis 
of the classical breather profile becoming indistinguishable from that associated with the 
spin waves as w approaches wo. The second-quantised breather corresponds to the 
bound state formed by two spin waves. This hierarchy is continued such that the nth- 
quantised breather corresponds the bound state formed by n spin waves. Thus, the 
breather spectrum now possesses a lower cut-off as well as an upper limit. 

The mapping between the quantum spin system and the sine-Gordon system is quite 
suspect, since the zero-point motions of the spins do not distinguish sufficiently between 
the in-plane motions and the out-of-plane motions. Thus the quantum renormalisations 
are of a more isotropic nature than one might otherwise have suspected. Bishop [5]  has 
suggested that as the temperature of the system is raised, the behaviour crosses over 
from that of the sine-Gordon model to that associated with the isotropic Heisenberg 
model in an applied field. The isotropic Heisenberg model is, like the sine-Gordon 
system, completely integrable in the continuum limit. The isotropic system has been 
shown to exhibit so called pulse solitons. Long and Bishop have noted the qualitative 
similarity between the pulse soliton and the breather excitations of both models. Fogedby 
[6] has used this similarity to suggest that the semi-classical quantised version of the 
pulse solitons also corresponds to multi-spin-wave bound states. 

In this paper we shall take a first step toward exhibiting the relation between the 
breathers and the pulse solitons. That is, we shall examine the lowest-order non-trivial 
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excitation of the hierarchy, the two-spin-wave bound states of the quantum spin system. 
The calculations we present here are complementary to the earlier work of Hood [7]. 
Hood’s calculations are valid for arbitrary values of S, but are restricted to small values 
of D/J. Our work, on the other hand, is valid for arbitrary D/J but is limited to the case 
where S S- 1. Nevertheless, our approach does produce results for the two-spin-wave 
bound-state dispersion relations which are very similar to those of Hood [7]. 

Our formulation does have the obvious advantage that it allows an immediate com- 
parison between the isotropic Heisenberg limit and the easy-plane sine-Gordon limit. 
The surprising result of this work seems to be that the q = 0 two-spin-wave bound state 
bears more resemblance to the two-spin-wave bound states of the isotropic Heisenberg 
model, as studied by Wortis [8], than to the quantised breather excitations. This feature 
is caused by a subtle cancellation between the effects of the in-plane components of the 
Zeeman interaction with the out-of-plane components. This cancellation becomes more 
pronounced as the wavevector q approaches the boundary of the Brillouin zone. The 
energy of the zone-boundary two-spin-wave bound state is therefore identical to that of 
the corresponding two-spin-wave bound state of the isotropic Heisenberg spin system. 
The effect of the easy-plane anisotropy is channelled into the production of a second 
bound state of two spin waves. This second bound state may be resolved from the edge 
of the two-spin-wave continuum state for q values close to the zone boundary. In this 
paper we also examine the effect that the interactions have on the two-spin-wave con- 
tinuum. In the harmonic-spin-wave approximation, the edge of the continuum shows a 
singularity. This singularity facilitates the production of the two-spin-wave bound states. 
However, the interactions which result in the formation of the two-spin-wave bound 
states also result in the washing-out of the divergence at the edge of the continuum. 

The paper is organised as follows. In the next section we outline the harmonic spin- 
wave approximation and the two-spin-wave contributions to the dynamic spin-spin cor- 
relation functions. We then examine the effects that the anharmonic interactions have 
on the two-spin-wave states. We neglect all parts of the anharmonic interactions that do 
not couple to the states where two spin waves are simultaneously excited. That means 
we neglect the couplings which exist between the two-spin-wave sum processes and the 
two-spin-wave difference processes. This neglect may be justified at T = 0, where the 
two-spin-wave difference process will be absent, since it is only present due to thermal 
activation. 

In § 4 we examine the various limits of the general result for the two-spin-wave 
spectrum derived in § 3. We show that our calculation reproduces the earlier results of 
Wortis [8] for the two-spin-wave bound states of the isotropic Heisenberg model. We 
also show that the first correction, in powers of D/J ,  to this isotropic limit reproduces 
the calculations of the two-spin-wave bound states which have been performed by Hood 
[7], valid for arbitrary S. In addition to the two-spin-wave bound states, we also examine 
the two-spin-wave continuum. We find that the two-spin-wave continuum contains a 
resonant branch as well as the scattering states. The effect of the interaction is also found 
to suppress the square-root singularity at the lower edge of the two-spin-wave continuum 
found in the harmonic theory. Our method is valid for arbitrary D/J ,  with S % 1, and can 
generate all the terms of the expansion in D/J. We shall show that when D/J - S 2 ,  the 
x-y phase does become unstable to a singlet phase. 

2. The two-spin-wave continuum 

We first examine the two-spin-wave continuum in the harmonic-spin-wave approxi- 
mation, and then in the next section we shall investigate the effect of the anharmonic 
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interactions and the formation of the two-spin-wave bound state. The system under 
consideration is described by the Hamiltonian 

where J is the strength of the isotropic ferromagnetic Heisenberg exchange interaction, 
D is the strength of the easy-plane anisotropy and H" is the strength of the applied 
magnetic field which breaks the spin-rotational invariance of the easy plane. We shall 
denote by s and, following the work of Riseborough [9], we describe the 
harmonic spin waves of the Hamiltonian by 

This can be diagonalised, to lowest order in 1 / S ,  by expressing the canonically 
conjugate operators Q)k and in terms of spin-wave creation and annihilation 
operations [ 101 through 

Q ) k  = a k ( a k +  + a k ) / a  

and 

st = i P k  %?@ (a; - a k )  

where a k  = p i1 and is given by 

ai = {WS[1 - COS(kU)] + 2DS f g/4gHx}/(uS[l - COS(~U)]  + g/4BHx}. 

The resulting harmonic part of the spin-wave Hamiltonian is given 

GO = 2 w k a k + a k  
k 

where the spin-wave dispersion relation is given by 

02 = {uS[1 - COS(ka)] + 2DS + gpU,H"}{us[1 + cos(ka)] + g/4BH"}. 

( 2 . 3 ~ )  

(2.3b) 

( 2 . 3 ~ )  

by 

(2.4a) 

(2.4b) 

The two-spin-wave continuum excitations show up directly in the x-x component 
of the dynamic spin correlation function [9]. The contribution due to the excitation of 
the two-spin-wave continuum can be written as 

( a ; / 2 - k a ; / : ! + k  + P & k P ; / 2 + k  - 2 ) ( 1  + N ( w q / 2 - k ) ) ( 1 + N ( w q / Z + k ) )  
k 

a(@ - m q / 2 - k  - w q / 2 + k ) .  (2.5) 
This represents the simultaneous creation of two spin waves with energy w and total 
wavevector q. The allowed range of energies, for fixed q ,  approximately lies within 
the range 

2 w q j 2  < w < m q / 2 - n  + w q / 2 + n .  (2 .6)  
The width of the spin-wave continuum is narrowest for values of q near q = n. 

The two-spin-wave continuum, calculated in the harmonic approximation, exhibits 
square-root singularities at its upper and lower boundaries. This can be seen by 
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performing the summation over k in the above expression, and utilising the properties 
of the dirac delta function. This results in the expression 
1 B(cr$2-kcr$2+k -k P24/2 -kP24 /2+k  - 2)(1 + N ( W q / 2 - k ) )  

(l + N ( W q / 2 + k ) ) / l d ( o q / 2 - k  - w q / 2 + k ) / d k l  (2.7) 
in which k has the value given by the solution of o = w q / 2 + k  + W q / 2 + k .  At the 
extremities of the two-spin-wave continuum, the total energy w ~ / ~ + ~  + W q / 2 + k  is an 
extremum, and therefore the denominator vanishes. At the lower edge of the con- 
tinuum, the numerator simplifies to 

W S ( 1  + N ( W q / 2 ) ) / W q / 2 1 2 .  (2.8) 
This shows that the two-spin-wave continuum has a square-root singularity at the 
edges, and that the strength of the singularity is a signature of the easy-plane character 
of the system [9, 111. 

Steiner et a1 [12] have recently reported the observation of structure associated 
with the lower edge of the two-spin-wave continuum in inelastic neutron scattering 
experiments. Both the excitation energy and the spectral intensity are in reasonable 
agreement with those predicted by the harmonic-spin-wave theory. 

In the next section we shall obtain a general expression for the two-spin-wave 
spectrum when anharmonic interactions are included. The anharmonic interactions 
will be treated within the random phase approximation. 

3. The effects of the interactions 

The lowest-order terms of the anharmonic interactions are rewritten in the appendix, 
such that the pairing terms appear as the sum of separable interactions. That is, the 
anharmomic interactions are written as 

where the matrix elements are given in the appendix. It should be noted that we have 
neglected the terms which produce the coupling between the two-spin-wave sum and 
difference spectra. This neglect is justified at T = 0 where, as we have shown, the 
zeroth-order two-spin-wave difference process vanishes. 

We shall define a two-spin-wave propagator by specifying the matrix elements 

n k , k t ( q ,  t)'" = - e ( t>Mk!q  M @  q ( a q / 2  - k ( t ) a q / 2  + k (t)a:/2 + k' &2 - k' (O))* ( 3 4  
The equation of motion for this two-spin-wave propagator is found to be 

i(a/dt)n k ,  k' (4 , t)'"') = M$!qMp', q ( s(t> (aq /2  - k aq /2  + k a&2 + k' :/2 - k' ) 

-ie(t) ( [ a q / 2 -  k t ) a q / 2 +  k ( t ) ;  H ( t ) l  - a;/2+ k' (0)a: /2-k'  (0))). (3.3) 

The Hamiltonian is then written as the sum of the quadratic term and the pairing 
interaction. The above equation then simplifies to the form 

[i(d/at) - w q / 2 - k  - W q / 2 + k ] n k , k ' ( q ,  t)'"') = s ( t ) [ 6 ( k  - k' )  + 6(k  f k ' ) ] M k ? q M $ ) q  
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The commutator with the interaction leads to higher-order correlation functions, 
We shall decouple the resulting hierarchy of equations of motion, by making the 
replacements 

w 2  + kl -4/2 - k )  ( a ; 3 2 - k l ( t ) a q / 2 - k  ( t > a q ~ / 2 + k z ( t ) ~ , , / 2 - r , 0 a , j 2 - k ,  ( 0 ) 4 / 2 +  k' (0)) 
+ O  

S(q'/2 + k l  -q/2 + k,  (a;/2 - k 1 ( t ) a q / 2  + k ( t ) a q ' / 2  + k z  ( t ) a q ' / 2  - k 2  (t)a&2 - k' ( o ) a ; / 2  + k' (0)) 
+ O  

%'/2 - kl - 4/2 - k )  ( a q / 2 - k  ( 4 a ; , / 2 + k 1  ( t ) Q / 2 + k z  ( t ) a q , / 2  - k z  ( t b , j 2 - , ,  ( 0 ) 4 2 + k ,  (0)) 

b(q - 4' + k l )  ( a q / 2  + k z  ( t ) a q / 2  - k2 - k' (o>a&2 + k' (0)) 
and 

S(q ' /2  - kl  - q/2 + k,  b q / 2 + k  ( t ) u i 8 / 2 + k 1  ( t ) u q ' / 2 +  k z  ( t ) a q ' / 2 -  k z  ( t ) a 4 j 2 -  k' ( 0 ) a ; / 2 + k J  (0)) 

-+ S(4 - q' )S(k  - kl)  k q / 2  + k z  ( 4 a q / 2  - k z  (t)a 4j2 - k' ( 0 ) 4 / 2  + k' (0)) (3.5) 
We have neglected the contractions that occur entirely between the operators associate 
with the interaction. Those terms contribute to the one-loop renormalisation of 
the spin-wave energies [13,14]. Therefore, those terms can be absorbed into a 
renormalisation of the spin-wave energies appearing on the left-hand side of equation 

This decoupling procedure is similar to that used by Tognetti et a1 [15]; however, 
as previously mentioned, we neglect correlations between excitations other than the 
two-spin-wave sum processes. Thus the neglect of the coupling between the two-spin- 
wave sum and difference processes restricts the validity of our calculation to T = 0. 

(3.4). 

The Fourier transform of the two-spin-wave propagator is defined by 

On Fourier transforming the equation of motion, we obtain a closed set of coupled 
equations: 

(0 - W q / 2 - k  - W q / 2 + k ) n k , k ' ( q ,  = [a (k  - k ' )  + d ( k  + k' ) ]  M f ! q M P ' , q  

On rearranging these equations and then summing over k ,  we find that 

satisfies the matrix equation 

where 
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and 

(3.9b) 

Inversion of the above matrix equation gives the general expression for the matrix 

The quantity of physical importance is 

since this is the part of the two-spin-wave propagator which appears in the spin-spin 
correlation function. 

In the next section we shall examine various limits of the result contained in 
equation (3.8). 

4. Results and discussion 

The two-spin-wave continuum contribution to the T = 0, x-x component of the spin- 
spin correlation function is given by the imaginary part of n(q, o)(l,l). At absolute 
zero, the two-spin-wave difference process does not contribute. In addition to the two- 
spin-wave continuum, there are also the two-spin-wave bound states. These bound 
states occur in the regions where the delta functions, 

6 ( w  - W q / 2 - k  - O q / 2 + k ) ,  

occurring in the imaginary part of n(q, o) are identically zero. In these regions, the 
only contributions to the spectral density are the values of w and q where the 
determinant of the matrix D(q ,  U )  vanishes. We shall examine the limiting case in which 
the strength of the easy-plane anisotropy D is zero, as well as the modifications that 
occur when one tries to expand around the D = 0 limit. Then we shall examine the limit 
of large D/J .  

4.1. The isotropic limit 

In the limit of vanishing single-ion anisotropy, the spectrum associated with the two- 
spin-wave bound states can be written as the solution of a simple polynomial equation. 
This simplification occurs due to the fact that in this limit, the matrix elements of 
D(q,  U )  can be evaluated analytically. The energy denominator occurring in D(q ,  o) 
can be written as 

(L) - W q / Z - k  - m q / 2 + k  = (U - 2gpFjHx - 4JS) + 4JScos(qa/2) cos(ka). (4.1) 
The summations over k in the expression for D(q ,  U )  can be performed by relating them 
to the summation 

2 [(U - 2gpBHX - ~ J S )  + US cos(qa/2) cos(ka)]-' 
k 

= * { (U  - 2gpBH" - 4 ~ s ) ~  - [US cos(qa/2)1~)-'/2. (4.2) 
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0 n/a 

Figure 1. The dispersion energy against 
momentum for the T = 0 two-spin-wave 
spectrum for the isotropic Heisenberg 
ferromagnet. In addition to the con- 
tinuum, there exists a continuous branch 
of bound states. q 

The zeros of the determinant of D (q ,  U )  locate the energies of the two-spin-wave 
bound states. In the isotropic limit, the determinant can be written as the determinant 
of a 2 X 2 matrix. The resulting equation for the energies of the two-spin-wave bound 
states is 

1 = (1/25) [l - 1/8S + x / c o s ( ~ u / ~ ) ]  [l t x / ~ ( x *  - l)] (4.3a) 

where 

x = (U - 2qpL,H" - 4J5)/4JS cos(qa/2). (4.36) 

This can be reduced to a cubic equation. Of the three roots, only one corresponds to 
a spin-wave-bound state of the above equation. The other solutions either do not 
satisfy the original equation or they lay within the continuum of two-spin-wave 
scattering states. 

In addition to the two-spin-wave bound states, we find that there is a resonance 
within the continuum of two-spin-wave states. This is in agreement with the work of 
Haldane [16, 171, which suggests that for S > 4 there should be two distinct branches 
in the two-spin-wave spectrum, which may be composed of either resonant or bound 
states. The resonance lies in the upper half of the continuum close to the upper edge 
of the continuum. As we shall show later, the introduction of easy-plane anisotropy 
has the effect of distorting the spin-wave resonance, pulling the resonance outside the 
lower edge of the continuum for q close to n / a  such that the resonance and the 
anisotropic-induced bound state still form one continuous branch. On excluding terms 
of order 1/S2, this equation becomes identical to that previously derived by Wortis 
[8] for the two-spin-wave bound states of the isotropic Heinsenberg ferromagnet. 
Since the equation derived by Wortis is exact at zero temperature, we see that the 
above procedure reproduces the exact equation up to order 1/S2. However, the terms 
of order 1/S2 and higher in the above equation are spurious and must cancel with the 
terms of the corresponding order that we have neglected in arriving at our result (such 
as the terms which normalise the spin-wave energies and similar terms that renormalise 
the two-spin-wave interacdons [18]). In figure 1 we depict the spectrum of the two- 
spin-wave continuum and the two-spin-wave bound states as derived from the exact 
equation, with S = 1. 

The leading corrections to the isotropic Heinsenberg limit may be obtained by 
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expanding the determinant in powers of D/J. It is instructive to examine the first- 
order corrections since these lead to the formation of another type of two-spin-bound 
state that exists for q values close to the Brillouin-zone boundary. This bound state 
has been previously found by Hood [7]. We shall see that our analysis reproduces the 
earlier work of Hood, when we expand the determinant and keep only the lowest 
powers of D/J. 

4.2. Limit of small easy-plane anisotropy 

The lowest order in the 1/S contribution to the determinant is given by the expression 

1 gpBHX [(ai/Z-k + Pi/2-k)(LYi/2+k + P i / 2 + k >  - 4 P $ 2 - k P i / 2 + k l  l+-;----C 
2 s  4 k (w - mql2-k - Wq/2+k) 

1 
2 s  

- [cos2(qa/2) + cos2(ka) - 2IPi/Z-kPi/Z+k + --JS 

1 

(U - Wq/2-k - wq/2+k) 

[cos2(qa/2) 4- COS2 (ka) - 2 COS(qa/;?) COS(ka)]ai/2-kai/2+k + 4 S C  
2 s  k @q/2-k  - @q/2tk) 

1 [cos2(ka) - cos2(qa/2)]2 +&SE 

+ s J S E  

+ s J S E  (4.4) 

k (U - wq/2-k  - @q/2tk) 
2 1 [I - cos(q/2 + k)a]P:/Z- k aq/2+ k 

k (0- wq/2-k - Oq/2+k) 

1 - [l - c0s((q/2 - k)a)lai/2-kPi/2+k 

k (w - mq12-k - Wq/2+k) 

These terms dominate the determinant for most q values, and give rise to the 
production of the two-spin-wave bound state which continues onto the two-spin-wave 
bound state of the isotropic Heisenberg limit, as D tends to zero. That is, the above 
form reproduces the lowest-order terms in l/S of equation (4.3), when both a and P 
tend to unity. The above expression, when expanded to order D/J both in the 
numerators and the denominators, results in the expression 

X 
1 - A [ 1 + [ ]} [ l  & x / d ( x 2  - l)] T (1/S)[D/4JScos(qa/2)](x2 - 1)-ll2 

2s  cos(qa/2) 
(4 .5~)  

in which x is given by 

x = (w - 2gpBHx - 2DS - 4JS)/4Js cos(qa/2). (4.5b) 

The above expression coincides with the terms of order 1/S previously derived by 
Hood [7]. 

The next terms in the expansion of the determinant are of order l/S2. There are 
two types of such terms. One type represents small modifications of lower-order terms. 
These are spurious and may be eliminated by renormalising the interactions between 
the spin-waves. We have ignored such renormalisations, in both the spin-wave energies 
and the interactions. The second types of term are of greater importance, since they 
give rise to a change of sign in the determinant as w approaches the bottom of the 
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0 R/Ci 

Figure 2. The two-spin-wave dispersion 
for the T = 0 Heisenberg ferromagnet 
with small single-site anisotropy. The ani- 
sotropy deforms the resonance in the con- 
tinuum until it emerges as a second bound 

4 state, for q close to z / a .  

two-spin-wave continuum. That is, they give rise to a second type of two-spin-wave 
bound state. This latter term can be written as 

- [D/US' C O S * ( ~ U / ~ ) ]  [l t x/'/(x' - l)] (4 * 6) 
for gpBHx > 2DS. This agrees with a similar term found by Hood. 

As previously noted, the effect of the anisotropy is to lower the energy of the two- 
spin-wave resonance, so it emerges from the continuum as a true bound state. Clearly, 
this analysis is based on an approximation which neglects higher powers of l/S and 
cannot be continued down to S = 1/2, since for S = 1/2 the local anisotropy is diagonal 
and for S = 1/2 one-dimensional spin systems can only support one branch and two- 
spin-wave bound states or resonances [16, 171. 

We note that the spurious terms of order 1,'s' have a negligible effect on the 
formation of the two-spin-wave bound states. For example, the single-ion bound state 
splits off from the bottom of the continuum when 

cos(qa/2) = D/(4JS) + O(D/J)' 

and is independent of S ,  to leading order in D/J. This can also be seen by examining 
the point q = n / a .  The two-spin-wave bound state 

lql) = exp(inRi/a)a:a: 10) ( 4 . 7 ~ )  
1 

has energy 

El = 4JS + 2DS + 2 g p ~ H "  - D (4.7b) 

while the other 'exchange' bound state 

lv) = 2 exp[in(Ri/a + 1/2)]afa:+l 10) 
i 

( 4 . 8 ~ )  

with energy 

E2 = 4JS + 2 0 5  + 2gpBH" - J .  (4.8b) 

These states and the binding energies are precisely those found by Hood, and are 
completely unaffected by the spurious terms. 
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In figure 2 we show the two-spin-wave continuum and the two-spin-wave bound 
states, as determined by retaining terms in the determinant up to order D/J only. The 
bound state due to the single-ion anisotropy may be resolved from the edge of the 
two-spin-wave continuum for values of q close to the boundary of the Brillouin zone. 
We have taken the value of D/J = 9/23.6. The dispersion associated with this bound 
state is of order D2/2J and is thus negligible, without our approximation. However, 
continuity with the two-spin-wave resonance does strongly suggest that the sign 
associated with the dispersion is correct, and that the entire branch can be described 
by 

U 4Js + 2gpBH" + D(2S - 1) -k 4JS(2S - 1) COS2(qa/2) [1 - (2s  f 1) COS2(qa/2)] 

for cos(q/2) = 0. For larger values of cos(q/2), the resonance has a position close to 
that of the isotropic Heisenberg system. 

In addition to introducing a resonance in the two-spin-wave continuum, the 
interactions also suppress the square-root singularity at its lower edge. In the harmonic 
theory, to lowest order in D/J ,  the spectrum near x 1 is given by 

[1/8Js cos(qa/2)] [ l / d ( l  - x')] (D/J) ' [ l  + g p B H x / 2 J s  - c0s(qa/2)]-~ 

The effect of the interactions is to replace this singularity by a spectral density which, 
to leading order in S, approaches zero at the lower edge as 

[ S  cos(qa/2)/~1 (D/J) 'v 'F~[I + gpBH"/US - cos(qa/2)1-~ 

x [I + D/J - C O S ( ~ U / ~ ) ] - ~ .  

This expansion in D/J can be pursued to higher order; however, the series is poorly 
convergent when the parameter D / a  becomes too large. Under such circumstances 
the determinants must be handled numerically. In the next section, we shall investigate 
the limiting form that is obtained when D/J S= 1. 

4.3. The large-anisotropy limit 

For large anisotropy, D/J % 1 ,  and a fixed value of the spin one expects that the 
x-y phase will become unstable to a singlet phase, in which the excitations are 
dominated by the value of the easy-plane anisotropy. For example, for S = 1 and 
D / J %  1, one may evaluate the spin-wave spectrum by decoupling the equations 
of motion, to obtain 

U; = D ( D  - 4Jcos(ka)) (4 * 9) 

to leading order in J .  This represents small-amplitude excitations away from the Sz = 
0 ground state. However, the spin-wave dispersion (2.4b) derived previously shows 
no evidence of such an instability. We shall, therefore, examine the two-spin-wave 
bound states in this regime in order to determine the mechanism whereby the x-y 
phase becomes instable. 

1, the fluctuations of 
the spins are mainly confined to lie within the easy plane as can be seen by comparing 
the form factors lakl and lPkl. Thus, in the limit of large anisotropy, the dominant part 

When the easy-plane anisotropy is sufficiently large, D/J 
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of the determinental equation reduces to 

[cos(qa/2) - cos(ka)12 (ui/2-kai/21k gpB rxJS 
16S2 

+ 
- Oq12-k - Oq/2+k 

x c  
x z  

k 

ai/2-kai/2+k(COS2k - COS k COS k ' )  ai12-p L Y ~ I ~ + ~ ,  2 

- wq/2-k - O q / 2  + k O -  Oq12-k' - Oq12ik' kk' 

(4.10) 
Equation (4.10) simplies in the limit H"+ 0, where 

nS = - I = -  x 1 + (qa/n)  - 1) cos(qa/2) -4 1 - 2  sin2(qa/2) 
V[I - x2 sin2(qa/4)] cos(qa/2) sin(qa/2) 

tan(qa/8 + n/4) + V{[I + x sin(qa/4)]/[1- x sin(qa/4)]) 
tan(qa/8 - n/4) - V[{I + x sin(qa/4)]/[1- x sin(qa/4)]) 

k 4  

x ln ! 
1 1 - x 2  cos2 (qa/2) 
V[I - x2 cos2(qa/4)] sin(qa/2) - 3  

tan(qa/8) + V{[I + x cos(qa/4)/[1 - x cos(qa/4)]) 
tan(qa/8) - V{[I + x cos(qa/4)]/[1 - x cos(qa/4)]) x In I ! (4.11) 

where x = 0/[2SV/UDsln(gu/2)]. 
For the values of V2D/J/16s < (n/16)/(1 + n/4), this equation does not possess 

a solution. Thus, as H" + 0, both bound states become degenerate with the bottom 
of the continuum. 

For m / l 6 s  > (n/16)/(1 + n/4), a bound state splits off from the continuum 
at q = n / a  and for larger values of this parameter, the branch extends to lower values 
of q ,  until 

(1/16S)d/2DIJ = n/24, 

when it reaches q = 0. On further increasing the coupling strength to the value 

(1/16$)- = n/S, 

one finds that our approximation for the two-spin-wave bound state becomes soft at 
q = 0, signalling the proximity to an instability of the ground state due to the emission 
of q = 0 bound-spin-wave pairs. Although this instability may be spurious, since our 
technique is only expected to produce reasonable results when 

(1/16s)V/2DIJ4 1, 

such an instability may be expected to occur to a singlet state [16]. 
Although for reasonable values of the coupling strength there is no solution of 

equation (4.9), H" = 0, this conclusion immediately changes on application of an 
infinitesimally small field. In the limit q = 0 and gpBH"/2JS 4 1 one finds that there is 
only one two-spin-wave bound state. Its energy is given by 

(4.12) 

where the coupling strength d/2DIJ/16S < 1. This coupling constant is the same as 

CO = 200[l - 4(V'Z@/16s)2(1 - -/16S + . . .)] 
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that previously identified by Mikeska and Patzak [14]. To lowest order in the coupling 
constant, equation (4.11) agrees with the second breather of the quantum sine-Gordon 
theory [3, 41. 

5. Summary 

We have examined the two-spin-wave states of an easy-plane ferromagnet. The 
spectrum consists of a continuum of two-spin-wave scattering states and two branches 
of two-spin-wave bound states. The bound-state branch of higher energy merges with 
the continuum for wavevectors close to the zone boundary and then continues its 
existence for smaller q as a resonance near the top edge of the two-spin-wave 
continuum. The effect of the bound state is to reduce the square-root singularity at 
the lower edge of the two-spin-wave continuum. 

A surprising result is that for q close to zero, the two-spin,wave bound states and 
resonant branches do retain the characteristics of the isotropic Heisenberg ferro- 
magnet, until D - m J .  For larger values of D/J ,  the isotropic or x-y phase becomes 
unstable by emission of bound pairs of spin waves. 
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Appendix. Anharmonic interactions 

The anharmonic interactions can be separated into two distinct classes: local inter- 
actions stemming from the Zeeman energy, and non-local interactions due to the 
Heisenberg exchange interaction. The lowest-order anharmonic interactions are tabu- 
lated in reference [13]. We shall rewrite the pairing part of these interactions as the 
sum of separable interactions: 

8 
1 

H i n t  = - --5 X C Al;:'M~!qM~',qa,j,-kaqj2+kaq/2+k'aq/2-k' (All  4s i = l  k,k ' ,q 

in which the total wavevector is conserved modulo 2n/a.  The matrix elements charac- 
terising the vertices are given by 
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In the above expressions we have symmetrised the matrix elements so that 

This leaves the interaction Hamiltonian invariant, since k and k’ are summed over, 
and the boson operators involving k (or k ’ )  in the interaction commute within 
themselves. 

References 

[ l ]  Mikeska H J 1978 J .  Phys. C: Solid State Phys. 11 L29 
[2] Currie J F, Trullinger S E, Bishop A R and Krumhansl J A 1977 Phys. Reu. B 15 5567 
[3] Dashen R F, Hasslacher B and Neveu A 1974 Phys. Rev. D 10 4114; 1975 Phys. Rev. D 11 3424 
[4] Maki K and Takayama H 1979 Phys. Reu. B 20 5002 
[5] Bishop A R 1980 Z. Phys. B 37 357 
[6] Fogedby H C 1980 J .  Phys. A: Math. Gen. Phys. 13 1467 
[7] Hood M 1984 J .  Phys. C: Solid State Phys. 17 1367 
[8] Wortis M 1963 Phys. Rev. 132 85 
[9] Riseborough P S 1984 Phys. Rev. B 30 3974 

[lo] Villain J 1974 J .  Physique 35 27 
[ l l ]  Rieter G F 1981 Phys. Reo. Lett. 46 202 
[12] Steiner M, Hirakawa H, Reiter G and Shirane G 1981 Solid State Commun. 40 65 
[13] Riseborough P S 1983 Solid State Commun. 48 901 
[14] Mikeska H J and Patzak E 1977 Z. Phys. B 26 253 
[15] Balucani U, Pini M G, Tognetti V and Rettori A 1982 Phys. Reu. B 26 4974 
[16] Haldane F D M 1982 J .  Phys. C: Solid State Phys. 15 L831 
[17] Haldane F D M 1982 J .  Phys. C: Solid State Phys. 15 L1309 
[18] Riseborough P S 1984 Z. Phys. B 57 289 


